
 1

DISCLAIMER

This draft whitepaper is a translation of multiple Chinese technical documents. This whitepaper
is intended for release amongst a small audience, and due to the nature of the internet, we
expect this to surface on forums and news sites, etc. Please keep in mind that this document is
not the official Qtum whitepaper, but a pre-release intended to update individuals of what to
expect. Some of the writing may be abstract or lack substance. This is not in any way a
controlled document, designed to give interested parties an advantage. The official whitepaper
will be released weeks before the Qtum Token Sale, and this version will be released upon
request by any individual or organization.

Feedback Welcome: foundation@qtum.org

2

Abstract 4

Part One Qtum Design Principles 6
1.1 Introduction 6
1.2 Purpose of the Qtum Blockchain Design 7
1.3 Qtum Design Principle 8

1.3.1 Qtum Compatibility Design 8
1.3.2 Qtum Module Design Approach 8
1.3.3 Qtum Security Principle 9
1.3.4 Qtum Usability Strategy 9

Part 2 Qtum Implementation 11
2.1 Qtum Blockchain 11
2.2 UTXO vs. Account Model 11

2.2.1 UTXO Model 11
2.2.2 Account model 12

2.3 Consensus 13
2.4 Qtum Contract and EVM Integration 15

2.4.1 EVM Integration 15
2.4.2 Qtum Account Abstraction Layer （Qtum AAL） 17
2.4.3 Added Standard Transaction Types 21

2.4.4 Gas Model 22
(a) Refunds 23
(b) Partial Refund Model 24
(c) Important GAS edge cases: 25

Part 3: Qtum Applications 27
3.1 DAPP Store 27
3.2 Industry Oriented 27
3.3 Identity and Privacy 27
3.4 Oracles and Data Feeds 27
3.5 Go Mobile 28

Future Directions 29

References 30

3

 ​ Qtum
 UTXO based PoS Blockchain Contract and DAPP Platform
 ​ ​ foundation@qtum.org

Abstract
Quantum Blockchain ​(‘​Qtum​’ [ˈkwɒntəm]) is a combination of Bitcoin Core, Proof-of-Stake,
and the Ethereum Virtual Machine (EVM). The end product, Qtum Core, will allow smart
contracts to execute on a Proof-of-Stake consensus model. This ecosystem was designed to
provide a familiar environment for Smart Contract and Decentralized Application developers.
The Qtum Foundation’s goal is to create a stable product, that does not require a steep learning
curve, and market it for mass business adoption.

One major goal of Qtum is to build a ​Value Transfer Protocol​ , which, with decentralized
applications, can be used to support and enhance various industries such as the financial
sector, supply chain tracking, internet of things, and social media.

Another Qtum goal is to maintain compatibility with existing processes from Bitcoin and
Ethereum, to be as secure as possible, and to be used easily by individuals, businesses, and
developers. Qtum's future development will be guided by the community and consensus
focused processes based on the existing process for Bitcoin Improvement Proposals (BIP).

Qtum is secured by the Proof-of-Stake 3.0 (POS 3.0) consensus protocol and is the first
blockchain platform to integrate Proof-of-Stake technology with a Smart Contract platform.
Smart contracts will also be executed as part of an Unspent Transaction Output (UTXO), which
is part of the Bitcoin transactional model. This brings about many advantages:

1) Compatibility with existing Bitcoin workflows
2) Retains the privacy aspects inherent in the Bitcoin UTXO model
3) The UTXO model is scalable for the long term
4) Integration with existing alternative node models for SPV and mobile wallets
5) A simpler implementation which has been proven by Bitcoin to be secure for over eight

years.

While Qtum can be used just like Bitcoin (except for the Proof-of-Stake modifications) to send
and receive digital currency, the real power of Qtum is the Smart Contract system. The
Ethereum Virtual Machine (EVM) has been integrated into Qtum and a blockchain abstraction
layer has been placed between the EVM and the UTXO based blockchain. This way existing
Ethereum smart contracts run with little or no modifications to the contract source code. At a
later stage, support for more powerful virtual machines (such as ones based on LLVM, Lua, or
Java) will be added as well.

4

"Go Mobile" is a core strategy of Qtum. The core developers of Qtum will work to ensure that
third party developers have ample infrastructure and functionality to support mobile use cases.
This includes a mobile wallet, API, and a framework for creating decentralized mobile
applications.

5

Part One Qtum Design Principles

1.1 Introduction
On 31st of October 2008, Satoshi Nakamoto announced the Bitcoin whitepaper titled “Bitcoin, A
Peer to Peer Electronic Cash System”, and introduced the Bitcoin network. Bitcoin has allowed
for many new ways to exchange money in a decentralized manner. However, Bitcoin users and
developers have always been met with various limitations in advanced usage. The biggest
limitations are that the Bitcoin Scripting Language is not Turing complete and it is severely
restricted in what data it has access to. We now introduce Qtum, which rectifies this problem by
directly integrating the existing Ethereum Virtual Machine (EVM) into Bitcoin’s UTXO model,
allowing for Ethereum-based smart contracts to be executed on a Bitcoin-based Unspent
Transaction Output (UTXO) blockchain.

There have been other methods used in the past to extend Bitcoin’s UTXO based blockchain so
that it can support Turing-complete smart contracts. The most popular implementation of this
has been colored coins. These coins use the existing Bitcoin network and mark certain outputs
with ​color​ metadata, and tracks this metadata throughout the blockchain. The largest problem
with this technique is that colored coin transactions can not be fully validated in a decentralized
way without the entire blockchain, and thus SPV-based light wallets (such as most mobile
wallets) would not function, or at least not be capable of operating in a secure decentralized
manner.

Qtum uses a different route for implementing smart contracts in Bitcoin. Qtum has been created
by forking Bitcoin’s source code and adding various custom modules to integrate the EVM. This
strategy is used for many different reasons. Bitcoin, even with its limitations, has a very large
community and has many companies who have already established business processes,
workflows, and tools based on this platform. A core tenet of Qtum is for it to be compatible with
existing tools and processes when possible. This will ease adoption by being familiar to both
Ethereum and Bitcoin users. Additionally, creating Qtum by forking the existing Bitcoin source
code allows for Qtum to be built with decreased development costs on top of a very well tested
system.

Ethereum also supports smart contracts and would seem like an ideal system to build Qtum on
top of; however, Ethereum and Bitcoin have a key difference in their design. Whereas Bitcoin
tracks funds on the blockchain using Unspent Transaction Outputs, Ethereum uses an
account-based approach. Each blockchain model has it’s own advantages and disadvantages,
of course. The UTXO model was chosen for Qtum primarily because of compatibility with Bitcoin
existing processes and the ability to use SPV technology to enable more mobile use cases;
although, the core concepts of Ethereum are more simple.

6

1.2 Purpose of the Qtum Blockchain Design
Since the Bitcoin project launched, the community has built up many alternative currencies and
blockchain projects. Some meaningful alternative cryptocurrency projects have become good
blockchain test cases. They helped improve and mature the blockchain technology, i.e.
NameCoin, etc. There are also many blockchain projects seeking to extend the limits of
technology from different angles, such as the ColorCoin protocol, NXTCoin, Ripple and Stellar,
BitShares, Dash, Maidsafe, Factom, and the Ethereum project which focuses on generic smart
contracts and decentralized applications.

Numerous developers and community members have witnessed the fast development of
blockchain technology. However, it is still facing many challenges from both technical and
business perspectives.

Some of the major problems currently facing blockchain technology:

1. The lack of a business oriented smart contracts. The current smart contract platforms are
mainly based on Proof-of-Work (PoW). However, the consensus mechanism of Proof-of-Stake
(PoS) is more suited for business applications.
2. Compatibility between different blockchain technologies, i.e. Bitcoin’s UTXO model is not
compatible with Ethereum’s account model.
3. Consensus mechanisms lack flexibility because of different participants, the requirements of
consensus mechanisms in public chains and permissioned chain are different.
4. The lack of consideration for business compliance requirements, i.e. identity and KYC/AML
requirements of the financial industry which the current blockchain implementations cannot fully
support.
5. The current blockchain implementations are not open to external actors. Most of the
triggering criteria for smart contracts are set on the blockchain itself. There are no triggering
criteria from off-chain data sources which can be used to build a connection with the real word.

Qtum proposes a series of innovations in blockchain technology and implementation, to offer a
response to the above challenges. This includes a UTXO model based smart contract platform,
a flexible consensus (Proof-of-Stake) mechanism for public and permissioned chains, the
Master Contract concept, identity management through smart contracts.

7

1.3 Qtum Design Principle

1.3.1 Qtum Compatibility Design
●​ ​Compatibility with Bitcoin and Ethereum network

The Bitcoin Network is the largest blockchain ecosystem so far. Based on the network effect
and Matthew Effect, the bitcoin ecosystem can be further expanded.

For Qtum’s design architecture, we need it to remain compatible with Bitcoin’s system, i.e., the
UTXO transaction model. It allows Qtum to be compatible with the BIP protocol. In later stages,
Qtum can accept more and more BIP’s, i.e. lighting network, sidechains, drivechains and Zero
Knowledge Proofs (Zcash) features and protocols, etc.

Ethereum was the first to change smart contracts from an idea to a reality, which further
advanced the limit of Blockchain technology. Though the ​Ethereum Virtual Machine ​ (EVM) has
room for improvement, i.e. Transaction-Ordering Dependence Attack/Timestamp Dependence
Attack, Mishandled Exceptions, etc., it is still the only tested smart contract virtual machine.
Therefore, to be compatible with EVM is very important. Qtum is designed to compatible with
EVM so that most smart contracts on Ethereum can also be ported to Qtum.

●​ ​ Backwards Compatibility
It is very important for a system to be backwards compatible. The smart contracts created on
older versions of the software should also operate well on a new version. The system won’t
require users to upgrade. This will bring more convenience to users. Once a smart contract is
deployed it won’t have to be changed forever if the system is backwards compatible, this will
help avoid potential problems for already deployed smart contracts. Similar problems happened
between EVM 2.0 and EVM 1.0. The designer of a blockchain system needs to consider such
problems.

1.3.2 Qtum Module Design Approach
A modular design approach can help developers better maintain the system. In Qtum, we
designed the following three modules:

●​ ​Qtum Tech Module​: Qtum Core, Qtum VM, Qtum Identity, Qtum Storage, etc.
●​ ​Qtum UI Module​: Qtum IDE, Qtum Mobile, Qtum Web, Qtum Node
●​ ​Qtum Business Module​: Qtum Financial, Qtum legal and risk, Qtum Industry

8

1.3.3 Qtum Security Principle
Reliability of Qtum infrastructure technology
The first stage of Qtum is to provide a UTXO based PoS smart contract platform, which can be
applied to different industries. The UTXO model is key to the Bitcoin network. The code is
mature and well tested. By being compatible with the UTXO model, Qtum can attract more
Bitcoin developers and use more tools. It has also been proved to be more secure than the
account based model.

For the consensus part, apart from Proof-of-Work (including Sha256/sha3/scrypt/X11/X13, etc.)
introduced by Adam Back and implemented by Satoshi in the Bitcoin network and other
developers of other networks, Proof-of-Stake is another widely used protocol. In the evolution of
PoS protocols, various potential attacks (i.e., Coin age attack, PoS nodes offline assault,
pre-calculated Hash attack, etc.) have been remediated.

Therefore, in the Qtum system, we will use the PoS protocol as our consensus base. We will
name it IPoS (Incentive Proof-of-Stake) as we will add an incentive mechanism. Currently, we
still use the PoS 3.0 protocol in the Qtum test network. At a later stage, we will transfer to the
newly designed IPoS protocol.

Qtum’s current test network supports EVM because this is the only tested smart contract virtual
machine so far. Later, we will focus on 1) developing a more strict smart contract coding
language; 2) supporting an enhanced EVM; 3) the possible integration of other virtual machines
(LLVM, Lua, NodeJS).

Qtum Platform security strategy
Qtum’s platform will undergo strict testing before deployment; this includes software functionality
testing, P2P network performance testing, potential attack tests, reliability tests, security and
coding audits, etc.

The Qtum developers will release each update on the test network, which will allow public
scrutiny of the code before a live release.

1.3.4 Qtum Usability Strategy
There will be different versions of the Qtum wallet, aimed at delivering multiple levels of
functionality, based on the needs of the user. This means a general wallet will be available to
meet the needs of most users; there will not be expert level debugging features, but all of the
basic send and receive functionality will exist. For developers and administrators, we expect
they will compile the source code and operate the daemon in the same way they do for Bitcoin

9

Core. Despite this, Qtum will release a pre-compiled binary for advanced users on different
operating systems. These will include all of the functionality that could be expected from a fresh
compile, but aimed at users that may not have the technical skills needed to compile Qtum
Core.

Similar to Bitcoin Core, there will be an API service based on Standard JSON-RPC. In addition,
we will also provide an Integrated Development Environment, for debugging and development.

Users may also access DAPP services through a browser (Chrome or Firefox, etc.) by inputting
Qtum://DappName to visit various DAPP’s. For example, users wanting to order (and pay for) a
taxi can visit a decentralized DAPP, calltaxi, via inputting Qtum://calltaxi

10

Part 2 Qtum Implementation

2.1 Qtum Blockchain
One of the primary goals of Qtum is to build the first UTXO based Smart Contract platforms with
a POS consensus model. This platform will be compatible with the Bitcoin and Ethereum
ecosystems.

Qtum’s target is to produce a variation of Bitcoin with EVM compatibility (Ethereum Virtual
Machine). Through a practical design, Qtum hopes to push its industry use cases with their
“Go-Mobile” strategy; this can also help Qtum promote blockchain technology to a wide array of
internet users.

2.2 UTXO vs. Account Model

2.2.1 UTXO Model
In the UTXO model there are transactions inputs, bitcoins destroyed, and transactions outputs,
bitcoins created by a transaction. In this way, a certain volume of bitcoins are transferred among
different private key owners, and new UTXOs are spent and created in the transaction chain.
The UTXO of a Bitcoin transaction is unlocked by signing the private key created by the public
address of the receiver (the new owner). In the Bitcoin network, miners generate bitcoins with a
process called a Coinbase transaction, which doesn’t contain any inputs.

Bitcoin uses a scripting language for transactions. In the Bitcoin network, the scripting system
processes data by stacks (Main Stack and Alt Stack), which is an abstract data type with the
LIFO feature: Last-In, First-Out.

In the Bitcoin client, the developers use Standard() function to summarize the scripting types,
Bitcoin clients support: P2PKH (Pay to Public key Hash), P2PK (Pay to Publickey),
MultiSignature (less than 15 private key signatures), P2SH (Pay to Script Hash), and
OP_Return. By these five standard scripting types, Bitcoin clients can process complex payment
logic. Besides that, a non-standard script can be created and executed, only on the condition
that there must be a miner who will encapsulate non-standard transactions.

For example – P2PKH (Pay to Publickey hash) to explain the process of script creation and
execution. Let’s say we need to pay 0.01BTC to a bread shop to buy some bread and the
bitcoin address of the shop is “Bread Address”.
 So, the output of this transaction is:
OP_DUP OP_HASH160 <Bread Public Key Hash> OP_EQUAL OP_CHECKSIG
 The unlock script according to the lock script is:

11

<Bread Signature> <Bread Public Key>

The combined script with the above two:
<Bread Signature> <Bread Public Key> OP_DUP OP_HASH160
<Bread Public Key Hash> OP_EQUAL OP_CHECKSIG

Only when the unlock script and the lock script have the matching predefined condition, the
execution of the script combination is true. It means the Bread Signature must be a signature
signed by matching the private key of Bread Address, which is the valid signature of Bread
Address, and then the result will be true.

Even though the scripting language of Bitcoin contains many characters, it is not
Turing-complete. There is no loop function that means the volume of execution of transactions
is limited, and it also means the complicity of transactions is limited. This scripting language is
not a commonly used programming language. Those limitations mitigate the security risks by
preventing complex payment conditions from happening, those that generate infinite loops or
other complicated logic loopholes.

In the UTXO model, we can trace back the history of each transaction through the public ledger
and is totally transparent. The UTXO model has the parallel processing capability to initialize
transactions among multiple addresses indicating the extendibility. Last but not least, the UTXO
model has a certain level of privacy. Users can use Change Address as the output of a UTXO.
Nevertheless, UTXOs have no status, and Qtum’s target is to implement smart contracts based
on the UTXO model’s innovative design.

2.2.2 Account model
Versus the UTXO model, Ethereum is an account based system. In the white paper of
Ethereum, there is elaboration about the account model shown below:

“​In Ethereum, the state is made up of objects called "accounts", with each account having a
20-byte address and state transitions being direct transfers of value and information between
accounts. An Ethereum account contains four fields:

● The nonce, a counter used to make sure each transaction can only be processed once
● The account's current ether balance
● The account's contract code, if present
● The account's storage (empty by default)

"Ether" is the main internal crypto-fuel of Ethereum, and is used to pay transaction fees. In
general, there are two types of accounts: externally owned accounts, controlled by private keys,
and contract accounts, controlled by their contract code. An externally owned account has no
code, and one can send messages from an externally owned account by creating and signing a
transaction; in a contract account, every time the contract account receives a message its code

12

activates, allowing it to read and write to internal storage and send other messages or create
contracts in turn.”

In Ethereum’s system, account balances are managed in the account system, in which any
increase or decrease of an account balance is illustrated more like a bank account in the real
world, and every new block generated will possibly make an influence on the global status of
accounts. Every account has its own balance, storage and code space base on that the contract
is able to call accounts or addresses, and store the execution results accordingly into the
storage.

In the current Ethereum account system, users can make one-to-one transactions via client/rpc,
which means a transaction can only be made from one account to another for each time.
Although it’s possible to send to more accounts via smart contract, these internal transactions
can only be revealed in the balance of each account, and it is difficult to track them on
Ethereum’s public ledger.

The UTXO model of the Bitcoin network, which ensures the consistency and traceability of
bitcoin transactions, is the core design of Bitcoin. ​Based on the network effect and the
advantages of the UTXO model we learned from Bitcoin, we decided to choose UTXO
model as the first step of Qtum.

2.3 Consensus
Based on the technical requirements of reliability and decentralization, Proof-of-Stake 3.0 was
selected as the consensus platform for Qtum’s Blockchain.

There have been many discussions about consensus and which platform meets the needs of a
particular project. The topics most widely discussed are: Proof-of-Work, Proof-of-Stake,
Dynamic Proof-of-Stake, and Byzantine Fault Tolerance as discussed by HyperLedger. The
nature of consensus is about how to achieve data consistency by running an algorithm in a
distributed system. All of the discussions about consensus will definitively go back to ask the
original question – how do we maintain the consistency of a distributed system? There are
many opinions in this field, for instance, the Fischer Lynch and Paterson theorem which states
consensus cannot be reached without 100% agreement amongst nodes.

In the Bitcoin network, miners participate in the network verification process by hash collision
through Proof-of-Work. When the hash value of a miner is able to calculate and meet a certain
condition, the miner could claim to the network that a new block has been mined. That is

13

the Hash() represents to compute SHA256 by power of 2 times, with value range [0, M], and D
is an integer between [1, M]. The SHA256 algorithm used by Bitcoin enables every node to
verify each block quickly. The 80 byte BlockHeader varies with each different Nonce. The
overall difficulty level of mining will be adjusted dynamically according to the total hash power of
the Blockchain’s network. When two or more miners solve a block at the same time, a small fork
in the network happens. This is the point where the Blockchain needs to make a decision as to
which block it should accept, and which one it should reject. In the Bitcoin network, the chain
that has the most proven work attached to it, is selected as legitimate.

There are different Proof-of-Work algorithms such as Scrypt, X11, Groestl, Equihash, etc. The
purpose of launching a new algorithm is to prevent the accumulation of computing power by one
entity, and ensure that Application Specific Integrated Circuits (ASIC) can not be introduced into
the economy.

Until now, most of Proof-of-Stake Blockchains can source their heritage back to PeerCoin,
which was developed from an earlier version of Bitcoin Core.

Qtum Core chose Proof-of-Stake for basic consensus, but we will develop and deploy POS
based on the latest Bitcoin source code.

In a traditional Proof-of-Stake transaction, the generation of a new block must meet the
following conditions:

ProofHash is computed by Stakemodifier, with unspent outputs and the current time. With this
method, one malicious attacker can start a double-spending attack by accumulating large
amounts of coin age. The other problem caused by coin age is that nodes will be online
intermittently after rewarding instead of being continuously online. Therefore, in the improved
version of POS agreement, coin age is removed to encourage more nodes to be online
simultaneously.

In the original Proof-of-Stake implementation, there are several security issues that may be
possible due to coin age attacks, etc. The Qtum developers agree with the security analysis of
the Blackcoin team and have worked to implement POS 3.0 into the latest Qtum Core. This
should theoretically reward investors that ‘stake’ their coins longer, while giving no incentive at
all to coin holders who leave their wallets offline.

14

2.4 Qtum Contract and EVM Integration
The Ethereum Virtual Machine is a stack-based virtual machine with a 256-bit machine word.
Smart contracts which run on Ethereum use this virtual machine for their execution.
The EVM is designed for Ethereum’s blockchain, and thus assumes that all value transfer will
be done using an account-based method. Qtum is based on Bitcoin’s blockchain design,
however, and uses the UTXO-based model. Thus, Qtum has an ​Account Abstraction Layer
which translates the UTXO-based model to an account-based interface for the EVM to use. As
well as this there is an additional ​Blockchain Interface​ so that the EVM can directly access
various details about the Qtum blockchain.

2.4.1 EVM Integration
 All transactions in Qtum use the Bitcoin Scripting Language, just like Bitcoin. In Qtum however,
there are 3 new opcodes.

1. OP_EXEC - This opcode will trigger special processing of a transaction (explained
below) and will execute the EVM bytecode passed to it.

2. OP_EXEC_ASSIGN - This opcode will also trigger special processing like OP_EXEC.
This opcode is passed a contract address and data to give the contract. It will then
execute the contract’s bytecode while passing in the given data (given as ​CALLERDATA
in EVM). This opcode is also used for giving money to a smart contract.

3. OP_TXHASH - This opcode is used to reconcile an odd part of the accounting
abstraction layer. It simply pushes the transaction ID hash of the current transaction
being executed.

15

Diagram 1 ：Qtum transaction processing diagram

Traditionally, scripts are only executed when an output is attempted to be spent. For example,
with a standard public key hash transaction, though the script will be on the blockchain, it will
not be either validated or executed in any way. Execution and validation does not happen until a
transaction input references that output. At this point, if the input script (​ScriptSig​) does not
provide a valid data to the output script that causes it to return 1, the transaction will not be
valid.

Qtum however, must accommodate smart contracts which execute immediately when merged
into the blockchain. It does this by special processing of transaction output scripts
(ScriptPubKey) which contain either OP_EXEC or OP_EXEC_ASSIGN. When one of these
opcodes are detected in a script, it is executed by all nodes of the network after the transaction
is placed into a block. In this mode, the actual Bitcoin Script Language serves less as a scripting
language and more as strictly a way to carry data to the EVM. When the EVM is executed by

16

either of these opcodes, the EVM can change state within it’s own state database, exactly like a
similar contract being executed on Ethereum.

For Qtum smart contracts to be as easy to use as possible, we have to authenticate the data
sent to a smart contract as well as its creator as coming from a particular pubkeyhash address.

In order to prevent the UTXO set of the Qtum blockchain from becoming too large, OP_EXEC
and OP_EXEC_ASSIGN transaction outputs are also spendable. OP_EXEC_ASSIGN outputs
are spent by contracts when their code sends money to another contract or to a pubkeyhash
address. OP_EXEC outputs are spent whenever the contract uses the suicide operation to
remove itself from the blockchain.

2.4.2 Qtum Account Abstraction Layer （Qtum AAL）
The Ethereum Virtual Machine is designed to function on an account-based blockchain. Qtum
however, being based on bitcoin, uses a UTXO-based blockchain. To handle this, Qtum
contains an Account Abstraction Layer which will allow the Ethereum Virtual Machine to function
on the Qtum blockchain without significant modifications to the virtual machine nor existing
Ethereum contracts.

The EVM account model exposed to smart contract programmers is fairly simple. There are
operations that can check the balance of the current contract and other contracts on the
blockchain, and there are operations which can send money (attached to data) to other
contracts. Although these actions seem fairly basic and minimalistic, they are not trivial to do
within the UTXO-based Qtum blockchain. Thus, the Account Abstract Layer’s implementation of
these operations may be more complex than expected.

First off, when a smart contract is deployed to the Qtum blockchain it is assigned and callable
by its transaction hash. A newly deployed contract’s balance will also be zero. There is currently
no protocol in Qtum that allows a contract to be deployed with a non-zero balance. In order to
send funds to a contract, a transaction will be created which uses the OP_EXEC_ASSIGN
opcode.

The output script which sends money to the contract would look similar to this:

1; the version of the VM

10000; gas limit for the transaction

100; gas price in Qtum satoshis

0xF012; data to send the contract (usually using the Solidity ABI)

0x1452b22265803b201ac1f8bb25840cb70afe3303; ripemd-160 hash of contract txid

OP_EXEC_ASSIGN

This transaction script is fairly simple and hands off most of the transaction processing to the
OP_EXEC_ASSIGN opcode. The actual value amount given to the contract from this (assuming

17

there is not an ​out-of-gas​ condition) is ​OutputValue - GasLimit​ . ​The exact details of the
gas mechanism will be discussed later. When this output is added to the blockchain, it becomes
an output that ​belongs​ to the contract’s account. This output’s value will be reflected in the
balance of the contract.The balance is simply the sum of the outputs which are spendable by
the contract.

Diagram 2： Assign Funds and/or Message contract TX

Although this diagram shows sending funds to a contract from a standard public key hash
output, the method for sending money from one contract to another is nearly identical. It is also
possible to send funds from P2SH and non-standard transactions to a contract.

When the contract wishes to send funds to another contract or public key hash address, it
spends​ one of its owned output. The mechanism by which it does this involves what will be
called ​Expected Contract Transactions​. These transactions are special in that they must exist
in a block in order for the block to be considered valid by the Qtum network. Expected Contract
Transactions are generated by miners while verifying and executing transactions, rather than
being generated by consumers. As such, they are not broadcast on the P2P network.

18

Diagram 3: Qtum Block Validation showing Expected Contract Transaction List

The primary mechanism that makes Expected Contract Transactions work is the new opcode,
OP_TXHASH. Internally, both OP_EXEC and OP_EXEC_ASSIGN have two different ​modes​ .
When they are executed as part of the output script processing, the EVM is executed. When
they are executed as part of input script processing, however, the EVM is not executed (as this
would result in double execution). Instead, the OP_EXEC and OP_EXEC_ASSIGN opcodes will
behave mostly like no-ops. They will return either 1 or 0 (spendable or not spendable,
respectively) based on the transaction hash given to them. This is why OP_TXHASH is so

19

important to the functioning of this concept. The OP_EXEC and OP_EXEC_ASSIGN opcodes
will check the Expected Contract Transaction List when they are in a state of attempting to be
spent. If the transaction hash passed in (from OP_TXHASH normally) to them exists in the
Expected Contract Transaction List, the result will be 1, or spendable. Otherwise, it will return 0,
or not spendable. In this way, OP_EXEC and OP_EXEC_ASSIGN using vouts are only
spendable when a contract and thus the Account Abstraction Layer requires that the vout
should be spendable (i.e., when the contract tries to send money somewhere). This logic is
somewhat circular but results in a secure and sound way of allowing a contract’s funds to be
spent only by that contract, and to behave mostly like a normal UTXO transaction.

One problem not yet touched on is that if a contract has more than one output that can be
spent, each node could pick different outputs, and thus completely different transactions for
spending OP_EXEC_ASSIGN transactions. This is resolved in Qtum by a consensus-critical
coin picking algorithm. This coin picking algorithm is similar to the standard coin picking
algorithm used within a user’s wallet. However, it has been greatly simplified to avoid the risk of
DoS attack vectors and so that the consensus rules can be as simple as possible. With this
consensus-critical coin picking algorithm, there is now no possibility of different nodes picking
different coins to be spent by a contract. Any miner/node who picks different outputs would fork
away from the main Qtum network, and their blocks would not be valid.

To put all of this together, when an EVM contract sends money either to a pubkeyhash address,
or to another contract, this will cause a new transaction the be constructed. The
consensus-critical coin picking algorithm would choose the best outputs out of the contract’s
pool of owned outputs. These outputs would then be spent as inputs with the input script
(ScriptSig) consisting of a single OP_TXHASH opcode. The outputs would thus be the
destination for the funds, and a change output (if required) to send the remaining funds of the
transaction back to the contract. This transaction’s hash would be added to the Expected
Contract Transaction List, and then the transaction itself would be added to the block
immediately after the contract execution transaction. Later, when this constructed transaction is
validated and executed, the Expected Contract Transaction List will be checked, confirmed to
be correct, and then this transaction’s hash will be removed from the Expected Contract
Transaction List. Using this model, there is no way of spoofing transactions to make them
spendable by providing a hardcoded hash as the input script, instead of using OP_TXHASH.

This abstraction layer makes it so that EVM contracts can be oblivious to coin picking, and
specific outputs, and can instead know only that they and other contracts have a balance, and
money can be sent to these contracts as well as outside of the contract system to pubkeyhash
addresses. With this in place, contract compatibility between Qtum and Ethereum should be
very strong, and very few modifications (if any) will need to be done to port an Ethereum
contract to the Qtum blockchain.

20

Diagram 4： Spend contract OP_EXEC_ASSIGN transaction

2.4.3 Added Standard Transaction Types

The following are the standard transaction types which were added to Qtum. They are
documented here as Bitcoin Script templates:

Deploying a new contract to the blockchain should use an output script which looks like so:

1; the version of the VM

[Gas limit]

[Gas price]

[Contract EVM bytecode]

OP_EXEC

21

Sending funds to an already deployed contract on the blockchain:

1; the version of the VM

[Gas limit]

[Gas price]

[Data to send to the contract]

[rip-emd160 hash of contract transaction id]

OP_EXEC_ASSIGN

Note there are no standard transaction type which can spend either of these. This is because
they can only be spent by using the Expected Contract Transaction List, and thus these
spending transactions would not be broadcast nor valid on the P2P network.

2.4.4 Gas Model
One major problem Qtum faces with adding Turing-completeness to the Bitcoin blockchain is
that it is no longer reasonable to rely on only the size of a transaction to determine the
appropriate fee paid to miners. This is because a very simple and small transaction could
implement an infinite loop and bring the entire blockchain to a halt while miners attempt to
process it. Thus, the Qtum Project has ported the concept of​ ​gas​ from Ethereum. The gas
concept can be summarized by saying that each EVM opcode executed has a price, and each
transaction has an amount of ​gas​ which can be spent. Whatever amount of gas remains after
the transaction is complete will be refunded back to the sender. Also if the amount of gas
required to execute a contract exceeds the amount of gas available to a transaction, then the
transaction’s actions and state changes are reverted. This means any permanent storage that
has been modified will be reverted to its original state, and any spending of contract funds will
be reverted so that they are not spent. Even though all of this state is reverted, all of the gas of
the transaction is consumed and given to the miner processing it. This is because the
computing resources have already been spent by it’s processing, so even though it’s not safe to
cause any state changes on the blockchain, the processing power has been spent and should
go to the miner for its effort.

Although Qtum uses the gas model from Ethereum, it is expected that the ​gas schedule​ (gas
price of each EVM opcode) will significantly differ from Ethereum. This is because in Qtum some
operations are more expensive than in Ethereum, and some operations are cheaper. The exact
values will be determined by looking at existing prices in Ethereum and comparing the amount
of processing and blockchain resources required for each opcode in comparison to Qtum.

When creating a contract funding or deployment transaction, the user specifies two specific
items for gas. The first is the ​GasLimit​ , which is how much gas can be consumed by this
contract execution. The second is the ​GasPrice​ , which is the exact price of each unit of gas in
Qtum satoshis. The maximum Qtum expenditure of a contract execution can thus be easily

22

computed by ​GasLimit​ multiplied by ​GasPrice​ . If this maximum expenditure exceeds the
transaction fee provided by the transaction, then the transaction is considered invalid and will
not be mined or processed. The remaining transaction fee after this maximum expenditure is
subtracted is the ​Transaction Size Fee​ . This is analogous to the standard Bitcoin fee model. To
determine the appropriate priority of a transaction, miners must now look at two variables. First,
the transaction size fee should be appropriate for the total size of the transaction (usually
determined by a minimum amount of ​coins per kilobyte​ formula). The second variable is, of
course, the ​GasPrice​ of a contract execution. Together, proof-of-stake miners have a great
degree of choice in choosing the most important and profitable transactions to process and
include in a block. This allows the fee model to work like a free market, with miners and users
optimizing for the best fee that suites their transaction’s speed and the price they are willing to
pay.

(a) Refunds
Using the UTXO model, funds sent to miners as transaction fees are non-negotiable. There is
no way for a miner to partially refund the fee if the transaction was easier for the miner to
process than expected. However, for the gas model to be useful, there must be some method to
refund some of the funds back to the sender. Moreover, there must be a way to roll back the
state of a transaction which runs out of gas, but also a way to give its gas fees to the miners.

Refunding gas fees in Qtum is made possible by creating new outputs as part of the miner’s
coinbase transaction. A new block validation consensus rule was added as well, to ensure that
these refunding outputs are required to exist in the coinbase transaction. Otherwise, miners
could choose to not refund these funds.

The sender of a transaction’s funds for refund purposes is considered to be the first input’s
referenced output. The refund is given back to it by simply copying the output script.Currently,
for security reasons, this script can only be a standard pay-to-pubkeyhash or pay-to-scripthash
script. This restriction may be lifted later if it is determined to be safe to do so.

For reference, the ​OP_EXEC_ASSIGN​ has this format (for assigning funds to a contract):

Inputs: (in push order)
● Transaction hash for spending [optional]

● version number (VM version to use, currently just 1)

● gas limit (maximum amount of gas that can be used by this exec)

● gas price (How much qtum each gas unit is)

● data (data to be passed to this smart contract)

● smart contract address

Outputs: (in pop order)

23

● Spendable (if the funds are currently spendable)

So, an example EXEC_ASSIGN might look like this:

1

10000

100

0xABCD1234...

3d655b14393b55a4dec8ba043bb286afa96af485

EXEC_ASSIGN

And if the VM execution results in an out of gas exception, this vout will be spent (by the next
transaction in the block) using this redeem script:

OP_TXHASH

And the generate vout for this transaction will be a pubkeyhash script taken from the
vin[0].prevout​ script. In this early version of Qtum, only pubkeyhash senders are allowed for
VM funding transactions. Although other forms can be accepted into blocks and will result in VM
execution, the ​msg.sender​ ​in the EVM will be "0", and any out of gas or gas refund needed will
result in the contract getting to keep these funds

(b) Partial Refund Model

For the other side of the gas model, it is also necessary to refund the unspent portion of the gas.
This is so that people can commit to spending a large amount of funds to ensure their contract
is executed properly, but what gas they didn't use they get back as a qtum refund.

The return address for gas is expressed on the blockchain as an the​ ​vin[0].prevout​ ​script of
the sending transaction. Gas is sent to a contract by using the standard bitcoin transaction fee
mechanism. So, the new fee model slightly augments this to make the transaction fee:

gas_fee = gas_limit * gas_price

txfee = vin - vout + gas_fee + tx_relay_fee

refund = txfee - used_gas - tx_relay_fee

Note that there is a proposal for making it so that miners can evaluate both the tx_relay_fee and
the gas_price under a single "credit_price" value to determine transaction priority.

As the contract is executed, gas tokens are subtracted from the total fee (by multiplying by
gas_price​). After the contract's execution has completed, the remainder of this gas_fee must be
returned to the given​ ​gas return script​. This should be accomplished by adding an output to
the coinbase transaction (what the miners use to retrieve their block reward). The vout that is

24

added to the coinbase is a pubkeyhash from ​vin[0].prevout​. In order to receive a gas refund,
this must be a pubkeyhash vout that is spent. Otherwise, the gas refund will remain with the
miner (and in out of gas condition, the funds sent will remain with the contract).

Note that it is currently only possible to have one EVM contract execution per transaction, so
there should never be a case arise where two contract executions attempt to share the
transaction fee. This may be enabled at a later point when a few other problems are solved with
multiple EVM executions per transaction.

(c) Important GAS edge cases:
Miners must be careful about contracts gas/fund return scripts. If the gas return script output will
cause the block to exceed the maximum block size, then the contract transaction can not be put
into this block, and its execution must take place again in the next block to mine instead. Miners
should always ensure there is enough room left in the candidate block for the gas return script
before attempting to execute the contract. Not following this rule can result in a contract needing
to be executed more than once after finding that the refund script won't fit into the current block.

If there are no gas funds to return, no vout will be made for returning the funds.

It is ​consensus-critical​ that the transaction fee include the ​gas_fee​. If a transaction is attempted
to be added to a block which would result in a negative gas refund, or the ​gas_fee​ ​is less than
the ​txfee​, then the transaction is invalid; thus any block with such a transaction will also be
invalid.

No transaction output script is valid that has more than 1 OP_EXEC or OP_EXEC_ASSIGN
opcode. This limits scripting abilities, but is much easier than dealing with the recursion/multiple
execution problems. In this way, static analysis can easily determine if the script is invalid, rather
than needing to execute the script to determine it.

25

Diagram 5: Gas Refund Model

26

Part 3: Qtum Applications

3.1 DAPP Store
The Qtum system is devoted to support DAPPs on a technical level, through the introduction of
Go Mobile. This will turn DAPP ideas into products and allow the average internet user to
understand the value of blockchain technology.

DAPPs facing different industries could bring blockchain technology to clients and industries.
Possible DAPPs could include social networks, storage, DNS services, etc.

Blockchain technologies provide the fundamental structure for constructing Decentralized
Applications. In Qtum, developer preparation work is simplified by completing the Qtum API
design.

3.2 Industry Oriented
The Qtum system supports the application needs of multiple industries: such as the financial
industry, , social networking, gaming, digital assets, etc. Qtum smart contracts can provide
support for more complex business logic via a Turing-complete programming language.

3.3 Identity and Privacy
Qtum will provide an optional identity module which is essential to integrate with various
industries. The Qtum system will manage users’ identities through smart contracts.

The developers of Qtum will develop smart contracts based on identity and share the source
code with a third party. With the involvement a third-party credit agency, the verified customers
will have more priority in Qtum.

Since the Qtum system is compatible with the UTXO model we can integrate with various
privacy protocols.

3.4 Oracles and Data Feeds
In Qtum, oracles represent trustworthy data sources, entities, nodes, and public addresses.
Oracles fulfill their responsibility through supply trusted data. Third parties can profit by offering
data as a service to interested parties.

Usually, the trustworthy data sources will come from institutions with public reputation such as
weather reporting networks, or the results of a sporting match. Developers could use APIs from
those institutions to obtain the data such as an HTTP request.

27

We will use game theory to design the data feed in Qtum by using different data sources for
deposit as a guarantee and rewarding the most trustworthy data source.

3.5 Go Mobile
The “Go Mobile” strategy is in the mind of the Qtum development team, and it is also an
important step to make blockchain technology set foot in the world. In the Qtum ecosystem, we
do not only give full support for the mobile application strategy, but also work together with
developers from third parties to provide mobile services for clients: including mobile wallets,
Dapps, smart contract applications, etc. We encourage developers from third parties to join us
push forward blockchain technology in China and develop a blockchain that can be used by
common internet users. We will offer a Qtum mobile wallet and a mobile contract API.

28

Future Directions
Here is a list of the future development:

1. More VMs support
2. Privacy based on ZCash protocol
3. Affinity Spending
4. Enabling P2SH contract ownership/funding
5. Dynamic gas model
6. Lifting various restrictions (such as 1 contract exec per transaction)
7. Making contracts easier to use for consumers, such as a special address type which

combines both the contract address and the data to be sent to the contract
8. GitHub but for verified smart contracts

29

References
[1] https://en.bitcoin.it/wiki/Category:History
[2] https://github.com/bitcoinbook/bitcoinbook
[3] https://www.bitcoin.org/bitcoin.pdf
[4] https://github.com/ethereum/wiki/wiki/White-Paper
[5] Arvind Narayanan et al., Bitcoin and Cryptocurrency Technologies, 2016,
http://www.the-blockchain.com/docs/Princeton%20Bitcoin%20and%20Cryptocurrency%20Tech
nologies%20Course.pdf
[6] N. Szabo, Smart contracts, 1994, http://szabo.best.vwh.net/smart.contracts.html
[7] Edward Felten, Game Theory and Bitcoin, 2013,
https://freedom-to-tinker.com/blog/felten/game-theory-and-bitcoin/
[8] Litecoin, 2011, https://litecoin.info/
[9] Evan Duffield and Kyle Hagan, Darkcoin: Peer-To-Peer Crypto-currency with
anonymous Blockchain Transactions and Improved Proof-of-Work System, 2014,
https://www.dash.org/wp-content/uploads/2014/09/DarkcoinWhitepaper.pdf
[10] Evan Duffield and Daniel Diaz, Dash: A Privacy Centric Crypto Currency, 2015,
https://www.dash.org/wp-content/uploads/2015/04/Dash-WhitepaperV1.pdf
[11] Sunny King and Scott Nadal, PPCoin: Peer-to-Peer Crypto-Currency with
Proof-of-Stake, 2012,
http://web.archive.org/web/20131228174819/http://peercoin.net/bin/peercoin-paper.pdf
[12] Novacoin, 2013, http://coinwiki.info/en/Novacoin
[13] Nxt, 2013, ​http://wiki.nxtcrypto.org/wiki/Whitepaper:Nxt

30

https://en.bitcoin.it/wiki/Category:History
https://panteracapital.com/wp-content/uploads/The-Final-Piece-of-the-Protocol-Puzzle.pdf
https://github.com/bitcoinbook/bitcoinbook
https://www.bitcoin.org/bitcoin.pdf
https://github.com/bitcoinbook/bitcoinbook
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.bitcoin.org/bitcoin.pdf
http://www.the-blockchain.com/docs/Princeton%20Bitcoin%20and%20Cryptocurrency%20Technologies%20Course.pdf
http://www.the-blockchain.com/docs/Princeton%20Bitcoin%20and%20Cryptocurrency%20Technologies%20Course.pdf
https://freedom-to-tinker.com/blog/felten/game-theory-and-bitcoin/
http://wiki.nxtcrypto.org/wiki/Whitepaper:Nxt

